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Abstract. Dense subgraphs of sparse graphs (communities), which ap-
pear in most real-world complex networks, play an important role in
many contexts. Computing them however is generally expensive. We
propose here a measure of similarities between vertices based on random
walks which has several important advantages: it captures well the com-
munity structure in a network, it can be computed efficiently, it works
at various scales, and it can be used in an agglomerative algorithm to
compute efficiently the community structure of a network. We propose
such an algorithm which runs in time O(mn2) and space O(n2) in the
worst case, and in time O(n2 log n) and space O(n2) in most real-world
cases (n and m are respectively the number of vertices and edges in the
input graph).

1 Introduction

Recent advances have brought out the importance of complex networks in many
different domains such as sociology (acquaintance or collaboration networks), bi-
ology (metabolic networks, gene networks) or computer science (Internet topol-
ogy, Web graph, P2P networks). We refer to [1,2,3,4,5] for reviews from different
perspectives and for an extensive bibliography. The associated graphs are in
general globally sparse but locally dense: there exist groups of vertices, called
communities, highly connected between them but with few links to other ver-
tices. This kind of structure brings out much information about the network.

This notion of community is however difficult to define formally. Many def-
initions have been proposed in social networks studies [1], but they are too
restrictive or cannot be computed efficiently. However, most recent approaches
have reached a consensus, and consider that a partition P = {C1, . . . , Ck} of the
vertices of a graph G = (V, E) (∀i, Ci ⊆ V ) represents a good community struc-
ture if the proportion of edges inside the Ci (internal edges) is high compared
to the proportion of edges between them. Therefore, we will design an algorithm
which finds communities satisfying this criterion.

We will consider throughout this paper an undirected graph G = (V, E) with
n = |V | vertices and m = |E| edges. We impose that each vertex is linked to
itself by a loop (we add these loops if necessary). We also suppose that G is
connected, the case where it is not being treated by considering the components
as different graphs.
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1.1 Our Approach and Results

Our approach is based on the following intuition: random walks on a graph tend
to get “trapped” into densely connected parts corresponding to communities.
We therefore begin with a theoretical study of random walks on graphs. Using
this, we define a measurement of the structural similarity between vertices and
between communities, thus defining a distance. We relate this distance to existing
spectral approaches of the problem. But our distance has an important advantage
on these methods: it is efficiently computable, and can be used in a hierarchical
clustering algorithm (merging iteratively the vertices into communities). One
obtains this way a hierarchical community structure that may be represented
as a tree structure called dendrogram (an example is provided in Figure 1).
We propose such an algorithm which computes a community structure in time
O(mnH) where H is the height of the corresponding dendrogram. The worst case
is O(mn2). But most real-world complex networks are sparse (m = O(n)) and,
as already noticed in [6], H is generally small and tends to the most favourable
case in which the dendrogram is balanced (H = O(log n)). In this case, the
complexity is therefore O(n2 log n).

1.2 Related Work

Community detection is related to the classical problem of graph partitioning
that consists in splitting a graph into a given number of groups while minimizing
the cost of the edge cut [7,8]. However, these algorithms are not well suited
to our case because they need the number of communities and their size as
parameters. The recent interest in the domain has started with a new divisive
approach proposed by Girvan and Newman [9,10]: the edges with the largest
betweenness are removed one by one in order to split hierarchically the graph
into communities. This algorithm runs in time O(m2n). Similar algorithms were
proposed by Radicchi et al [11] and by Fortunato et al [12]. The first one uses
a local quantity (the number of loops of a given length containing an edge) to
choose the edges to remove and runs in time O(m2). The second one uses a more
complex notion of information centrality with a time complexity O(m3n).

Hierarchical clustering is another classical approach: from a measurement of
the similarity between vertices, an agglomerative algorithm groups iteratively
the vertices into communities (different methods exist, differing on the way of
choosing the communities to merge at each step). Several agglomerative methods
have been recently introduced. Newman proposed in [13] a greedy algorithm that
starts with n communities corresponding to the vertices and merges communities
in order to optimize a function called modularity which measures the quality of
a partition. This algorithm runs in O(mn) and has recently been improved to
a complexity O(mH log n) (with our notations) [6]. The algorithm of Donetti
and Muñoz [14] uses the eigenvectors of the Laplacian matrix of the graph to
measure the similarities between vertices. The complexity is determined by the
computation of all the eigenvectors, in O(n3) time for sparse matrices. Other
interesting methods have been proposed, see for instance [15,16,17,18].
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Random walks have already been used to infer structural properties of net-
works in some previous works. Gaume [19] used this notion in linguistic context.
Fouss et al [20] used the Euclidean commute time distance based on the average
first-passage time of walkers. Zhou and Lipowsky [21] introduced another dissim-
ilarity index basd on the same quantity, it has been integrated in a hierarchical
algorithm (Netwalk). Markov Cluster Algorithm [22] iterates two matrix oper-
ations (one corresponding to random walks) bringing out clusters in the limit
state. Unfortunately the three last approaches runs in O(n3) and cannot manage
networks with more than a few thousand vertices. Our approach has the main
advantage to be significatively faster while producing very good results.

2 Preliminaries on Random Walks

The graph G is associated with its adjacency matrix A: Aij = 1 if vertices i and
j are connected and Aij = 0 otherwise. The degree d(i) =

∑
j Aij of the vertex

i is the number of its neighbors (including itself). To simplify the notations, we
only consider unweighted graphs in this paper. It is however trivial to extend
our results to weighted graphs (Aij ∈ R

+ instead of Aij ∈ {0, 1}).
Let us consider a discrete random walk process (or diffusion process) on the

graph G (see [23] for a complete presentation of the topic). At each time step
a walker is on a vertex and moves to a vertex chosen randomly and uniformly
among its neighbors. The sequence of visited vertices is a Markov chain, the
states of which are the vertices of the graph. At each step, the transition prob-
ability from vertex i to vertex j is Pij = Aij

d(i) . This defines the transition matrix
P of the random walk.

The process is driven by the powers of the matrix P : the probability of going
from i to j through a random walk of length t is (P t)ij . In the following, we will
denote this probability by P t

ij . It satisfies two general properties of the random
walk process which we will use in the sequel:

Property 1. When the length t of a random walk starting at vertex i tends
towards infinity, the probability of being on a vertex j only depends on the
degree of vertex j (and not on the starting vertex i): ∀i, limt→+∞ P t

ij = d(j)∑
k d(k) .

Property 2. The probabilities of going from i to j and from j to i through a
random walk of a fixed length t have a ratio that only depends on the degrees
d(i) and d(j): ∀i, ∀j, d(i)P t

ij = d(j)P t
ji.

3 Comparing Vertices Using Short Random Walks

In order to group the vertices into communities, we will now introduce a distance
r between the vertices that captures the community structure of the graph. This
distance must be large if the two vertices are in different communities, and on
the contrary if they are in the same community it must be small. It will be
computed from the information given by random walks in the graph.
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Let us consider random walks on G of a given length t. We will use the infor-
mation given by all the probabilities P t

ij to go from i to j in t steps. The length
t of the random walks must be sufficiently long to gather enough information
about the topology of the graph. However t must not be too long, to avoid the
effect predicted by Property 1; the probabilities would only depend on the de-
gree of the vertices. Each probability P t

ij gives some information about the two
vertices i and j, but Property 2 says that P t

ij and P t
ji encode exactly the same

information. Finally, the information about vertex i encoded in P t resides in
the n probabilities (P t

ik)1≤k≤n, which is nothing but the ith row of the matrix
P t, denoted by P t

i.. To compare two vertices i and j using these data, we must
notice that:

– If two vertices i and j are in the same community, the probability P t
ij will

surely be high. But the fact that P t
ij is high does not necessarily imply that

i and j are in the same community.
– The probability P t

ij is influenced by the degree d(j) because the walker has
higher probability to go to high degree vertices.

– Two vertices of a same community tend to “see” all the other vertices in the
same way. Thus if i and j are in the same community, we will probably have
∀k, P t

ik � P t
jk.

We can now give the definition of our distance between vertices, which takes into
account all previous remarks:

Definition 1. Let i and j be two vertices in the graph and

rij =

√
√
√
√

n∑

k=1

(P t
ik − P t

jk)2

d(k)
=

∥
∥
∥D− 1

2 P t
i. − D− 1

2 P t
j.∥

∥
∥ (1)

where ‖.‖ is the Euclidean norm of R
n.

One can notice that this distance can also be seen as the L2 distance between
the two probability distributions P t

i. and P t
j.. Notice also that the distance

depends on t and may be denoted rij(t). We will however consider it as implicit
to simplify the notations.

Theorem 1. The distance r is related to the spectral properties of the matrix P

r2
ij =

n∑

α=2

λ2t
α (vα(i) − vα(j))2

where (λα)1≤α≤n and (vα)1≤α≤n are respectively the eigenvalues and right eigen-
vectors of the matrix P .

This theorem relates random walks on graphs to the many current works that
study spectral properties of graphs. For example, [24] notices that the modular
structure of a graph is expressed in the eigenvectors of P (other than v1) that
corresponds to the largest positive eigenvalues. If two vertices i and j belong
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to a same community then the coordinates vα(i) and vα(j) are similar in all
these eigenvectors. Moreover, [25,26] show in a more general case that when an
eigenvalue λα tends to 1, the coordinates of the associated eigenvector vα are
constant in the subsets of vertices that correspond to communities. A distance
similar to ours (but that cannot be computed directly with random walks) is also
introduced: d2

t (i, j) =
∑n

α=2
(vα(i)−vα(j))2

1−|λα|t . Finally, [14] uses the same spectral
approach applied to the Laplacian matrix of the graph L = D − A.

All these studies show that the spectral approach takes an important part
in the search for community structure in graphs. However all these approaches
have the same drawback: the eigenvectors need to be explicitly computed (in
time O(n3) for a sparse matrix). This computation rapidly becomes untractable
in practice when the size of the graph exceeds some thousands of vertices. Our
approach is based on the same foundation but has the advantage of avoiding
the expensive computation of the eigenvectors: it only needs to compute the
probabilities P t

ij , which can be done efficiently as shown in the following theorem.

Theorem 2. All the probabilities P t
ij can be computed in time O(tnm) and space

O(n2). Once these probabilities computed, each distance rij can be computed in
time O(n).

Proof. To compute the vector P t
i., we multiply t times the vector P 0

i. (∀k,
P 0

i.(k) = δik) by the matrix P . This direct method is advantageous because the
matrix P is generally sparse (for real-world complex networks) therefore each
product is processed in time O(m). The initialization of P 0

i. is done in O(n) and
thus each of the n vectors P t

i. is computed in time O(n+ tm) = O(tm). Once we
have the two vectors P t

i. and P t
j., we can compute rij in O(n) using Equation

(1).

Now we generalize our distance between vertices to a distance between com-
munities in a straightforward way. Let us consider random walks that start from
a community: the starting vertex is chosen randomly and uniformly among the
vertices of the community. We define the probability P t

Cj to go from community
C to vertex j in t steps:

P t
Cj =

1
|C|

∑

i∈C

P t
ij

This defines a probability vector P t
C. that allows us to generalize our distance:

Definition 2. Let C1, C2 ⊂ V be two communities. We define the distance
rC1C2 between these two communities by:

rC1C2 =
∥
∥
∥D− 1

2 P t
C1. − D− 1

2 P t
C2.∥

∥
∥ =

√
√
√
√

n∑

k=1

(P t
C1k − P t

C2k)2

d(k)

This definition is consistent with the previous one: rij = r{i}{j} and we can also
define the distance between a vertex and a community. Given the probability
vectors P t

C1. and P t
C2., the distance rC1C2 is also computed in time O(n).
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4 The Algorithm

In the previous section, we have proposed a distance between vertices (and
between sets of vertices) to capture structural similarities between them. The
problem of finding communities is now a clustering problem. We will use here
an efficient hierarchical clustering algorithm that allows us to find community
structures at different scales. We present an agglomerative approach based on
Ward’s method [27] that is well adapted to our distance and gives very good
results while reducing the number of distance computations in order to be able
to process large graphs.

We start from a partition P1 = {{v}, v ∈ V } of the graph into n communities
reduced to a single vertex. We first compute the distances between all adjacent
vertices. Then this partition evolves by repeating the following operations. At
each step k:

– Choose two communities C1 and C2 in Pk on a criterion based on the distance
between the communities that we detail later.

– Merge these two communities into a new community C3 = C1 ∪ C2 and
create the new partition: Pk+1 = (Pk \ {C1, C2}) ∪ {C3}.

– Update the distances between communities (we will see later that we actually
only do this for adjacent communities).
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Fig. 1. (a) An example of community structure found by our algorithm using random
walks of length t = 3. (b) The stages of the algorithm encoded as a tree (dendrogram).
The maximum of Q, plotted in (c), shows that the best partition consists in two
communities.



290 P. Pons and M. Latapy

After n − 1 steps, the algorithm finishes and we obtain Pn = {V }. Each step
defines a partition Pk of the graph into communities, which gives a hierarchical
structure of communities called dendrogram (see Figure 1(b)). This structure
is a tree in which the leaves correspond to the vertices and each internal node
is associated with a merging of communities in the algorithm: it corresponds
to a community composed of the union of the communities corresponding to its
children. The key points in this algorithm are the way we choose the communities
to merge, and the fact that the distances can be updated efficiently. We will also
need to evaluate the quality of a partition in order to choose one of the Pk as
the result of our algorithm. We will detail these points below, and explain how
they can be managed to give an efficient algorithm.

Choosing the communities to merge. This choice plays a central role for the
quality of the community structure created. In order to reduce the complexity,
we will only merge adjacent communities (having at least an edge between them).
This reasonable heuristic (already used in [13] and [14]) limits to m the number
of possible mergings at each stage. Moreover it ensures that each community
is connected. We choose the two communities to merge according to Ward’s
method. At each step k, we merge the two communities that minimize the mean
σk of the squared distances between each vertex and its community.

σk =
1
n

∑

C∈Pk

∑

i∈C

r2
iC

This approach is a greedy algorithm that tries to solve the problem of maximizing
σk for each k. But this problem is known to be NP-hard: even for a given k,
maximizing σk is the NP-hard “K-Median clustering problem”. So for each pair
of adjacent communities {C1, C2}, we compute the variation ∆σ(C1, C2) of σ
if we would merge C1 and C2 into a new community C3 = C1 ∪ C2 and we
merge the two communities that give the lowest value of ∆σ. This quantity only
depends on the vertices of C1 and C2, and not on the other communities or on
the step k of the algorithm:

∆σ(C1, C2) =
1
n

( ∑

i∈C3

r2
iC3

−
∑

i∈C1

r2
iC1

−
∑

i∈C2

r2
iC2

)
(2)

Computing ∆σ and updating the distances. The important point here is to notice
that these quantities can be efficiently computed thanks to the fact that our
distance is a Euclidean distance, which makes it possible to obtain the following
classical result [28]:

Theorem 3. The increase of σ after the merging of two communities C1 and
C2 is directly related to the distance rC1C2 by:

∆σ(C1, C2) =
1
n

|C1||C2|
|C1| + |C2|

r2
C1C2
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This theorem shows that we only need to update the distances between com-
munities to get the values of ∆σ: if we know the two vectors PC1. and PC2.,
the computation of ∆σ(C1, C2) is possible in O(n). Since we only merge adja-
cent communities, we only need to update the values of ∆σ between adjacent
communities (there are at most m values). These values are stored in a balanced
tree in which we can add, remove or get the minimum in O(log m).

Evaluating the quality of a partition. The algorithm induces a sequence
(Pk)1≤k≤n of partitions into communities. We now want to know which partitions
in this sequence capture well the community structure. The most widely used
method is to choose the partition maximizing the modularity Q introduced in
[10,13]. This quantity uses the fraction of edges eC that are inside the community
C and the fraction of edges1 aC bound to the community C: Q(P) =

∑
C∈P eC −

a2
C . However, depending on one’s objectives, one may consider other quality

criterion.

Complexity. First, the initialization of the probability vectors is done in O(mnt).
Then, at each step k of the algorithm, we keep in memory the vectors P t

C.
corresponding to the current communities (the ones in the current partition).
But for the communities that are not in Pk (because they have been merged
with another community before) we only keep the information saying in which
community it has been merged. We keep enough information to construct the
dendogram and have access to the composition of any community with a few
more computation.

When we merge two communities C1 and C2 we perform the following oper-
ations:

– Compute P t
(C1∪C2). =

|C1|P t
C1.+|C2|P t

C2.
|C1|+|C2| and remove P t

C1. and P t
C2..

– Update the values of ∆σ concerning C1 and C2 using Theorem 3.

The first operation can be done in O(n), and therefore does not play a significant
role in the overall complexity of the algorithm. The dominating factor in the
complexity of the algorithm is the number of distances r computed (each one in
O(n)). We prove an upper bound of this number that depends on the height H
of the dendrogram.

Theorem 4. An upper bound of the number of distances computed by our algo-
rithm is 2mH. Therefore its global time complexity is O(mn(H + t)).

In practice, a small t must be chosen (we must have t = O(log n) due to the
exponential convergence speed of the random walks process) and thus the global
complexity is O(mnH). The worst case is H = n − 1, which occurs when the
vertices are merged one by one to a large community. This happens in the “star”
graph, where a central vertex is linked to the n − 1 others. However Ward’s
algorithm is known to produce small communities of similar sizes. This tends to
get closer to the favorable case in which the community structure is a balanced
tree and its height is H = O(log n).
1 Inter-community edges contribute for 1

2 to each community.
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5 Conclusion and Further Work

We proposed a new distance between the vertices that quantify their structural
similarities using random walks. This distance has several advantages: it captures
much information on the community structure, it is well suited for approxima-
tion, and it can be used in an efficient hierarchical agglomerative algorithm. We
designed such an algorithm which works in time O(mnH). In practice, real-world
complex networks are sparse (m = O(n)) and the height of the dendrogram is
generally small (H = O(log n)); in this case the algorithm runs in O(n2 log n).
An implementation is provided at [29].

We presented in this short paper the main principle of the algorithm. However
many improvements and optimizations have been implemented, which make it
possible to process very large networks (up to several hundred thousand vertices).
Moreover, extensive experiments have been run to compare the different existing
approaches. They show that our method provides excellent results in different
conditions (graph sizes, densities, number of communities, and community size
distributions) while having a time complexity among the best ones.

We are convinced that our method could be integrated in a multi-scale vi-
sualization tool for large networks. Our approach may also be relevant for the
computation of overlapping communities (which often occurs in real-world cases
and is not considered by any algorithm until now). We consider these two points
as promising directions for further work. Finally, we pointed out that the method
is directly usable for weighted networks. For directed ones (like the important
case of the Web graph), on the contrary, the proofs we provided are not valid
anymore, and random walks behave significantly differently. Therefore, we also
consider the directed case as an interesting direction.
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