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Abstract— We consider problems of network reliability: the
two-terminal network reliability consists, given an undirected
graph G = (V,E), and a series of independent edge failure
events, in computing the probability that two nodes remain
connected. The all-terminal network reliability is the probability
that the whole network remains connected. We present in the
following two different approaches to compute two-terminal
and all-terminal reliability, with various characteristics on the
precision level of the result. We give an exact algorithm to
compute the reliability in O(|V |f(w)2 + |E|f(w)) with f(x) =(
x

ln x

)x
e−(1+o(1))x and w is the tree-width of G. We also present

polynomial methods to give bounds on the reliability. We discuss
methods to optimize the mean time to repair of the components.

Keywords : two-terminal reliability, all-terminal reliability,
tree-width, frontal methods, polynomial approximations.

I. INTRODUCTION

Telecommunication network designers aim at drawing fault
tolerant networks, but high connectivity solutions are generally
too expensive. The usual client requirement for nowadays se-
cured systems is 2-connectivity, which means that the network
still works after one failure. However, this single constraint
seems to be not enough to comply with the classical contrac-
tual conditions. For instance, the France Telecom Transfix 2.0
service guarantees a rate of reliability of 1.5.10−3, which
means that the link has to be down for less than 6 hours and
35 minutes every six months. As a result, a client willing
a higher reliability rate has to use at least 2-connectivity and
combine properly the elements in order to achieve the required
reliability rate. Since this criterion becomes an important
element of the desired quality of service of a client network,
some algorithms and methods are required to evaluate it as
efficiently as possible.
A simple model consists in viewing the network as a graph
where a ramdom function is defined on the different com-
ponents, so the probability space emphasizes the different
failure events. Different criteria can be considered in order
to express the reliability of a network. The main ones are the
four following :

• The first one is devoted to telecommunication network
operators. It can be defined as the ratio between the
expected traffic (the sum of the products of a demand by
the probability that the demand can reach its destination)
and the total desired traffic (the sum of the demands).

• The second considers for a given demand the ratio
between the expected traffic serviced and the demand.

• The third considers for each demand the probability that
there exists at least a path linking the origin of the demand
to its destination.

• The fourth considers the probability that the network is
connected.

Notice that the three latter criteria are more devoted to a
customer approach than the first one. In the remainder we
will focus on the third and fourth criterions.

Our problem can be formulated as follows: given an undi-
rected graph G = (V,E), we consider independent failures
on the edges in E. Each failure is associated with its edge e
and occurs randomly and independently to the other ones with
probability pe. We are given the probability space Ω where the
failures are represented by a series of independent 0/1 variables
Ye with P [Ye = 0] = pe. Given an event ω in Ω we consider
the graph Gω = (V,Eω) defined by

Eω = {e ∈ E, Ye(ω) = 1}
and for any two vertices s and t of V we have the random
variable Xs,t defined for each probability event ω by

Xs,t(ω) = 1 if there exists a path
between s and t in Gω ,

Xs,t(ω) = 0 if not.

We aim at evaluating E[Xs,t]. This problem, called the two-
terminal network reliability problem, is well-known for being
#P -hard (see [22] and [7]). A similar problem is to consider
the random variable Z defined for each probability event ω
by:

Z(ω) = 1 if the graph Gω is connected
Z(ω) = 0 otherwise.

And our goal is to compute E[Z]. This problem is called the
all-terminal network reliability problem.

In [1] M. Ball and J. Provan gave an upper bound and a
lower bound of the reliability of systems and they showed
that the bounds are equal if the system consists in a matroid
in the following sense. Let K be the set of components and
let P be a family of subsets of K and suppose the system
operates if at least one element of P operates, then one says the
system consists in a matroid if P is a matroid. More recently,



D. Karger investigates the all-terminal network reliability and
gives a randomized polynomial time approximation scheme for
this problem, [15]. R. Kannan mentions the network reliabilty
as an important open problem for which an approximation
would be useful, see [14]. Also, algorithms polynomial in the
number of minimal cuts have been proposed [11], [23], but this
number can grow tremendously with the size of the network.
Also an estimation of the two-terminal reliability was recently
given in the case where the graph is planar, [6]. We now give
some insight in order to illustrate the problem of interest. We
will call equipment any device which is useful for the proper
functioning of networks, for instance a switch, a multiplexer
or electrical energy suppliers, etc... To each equipement are
associated a mean time separating two consecutive failures,
say Mtbf , and a mean time to repair, say Mttr . We make
the assumption that all the failures are independent. Thus the
probability that an equipment i does not work is given by the
ratio Mttri

Mtbf i
. We will call a network component every switching

node or transmission link. A component is composed by
several equipments. For instance, in an SDH transmission
link, it may be composed by an optical fiber with optical
multiplexers; in case of WDM networks, by some add-drop
multiplexers. Thus it is possible to compute for each network
component its failure probability.

The article is organized as follows. In the next section
we detail our exact algorithm and analyze its complexity.
In the third section we focus on various bounds derived in
polynomial time. Finally, in section 4 we derive results on the
practical problem of return mean times to repair for a real use
of these results to manage repairing teams.

II. AN EXACT ALGORITHM FOR THE SIMPLIFIED PROBLEM

The basic idea of the algorithm presented here relies on the
notion of a frontal description of a graph. We use the definition
of tree-decomposition of Robertson and Seymour [24]. Many
similar approaches have been developed in the past [3], [9],
[13], [18], even in related domains such as resilience [20].
The originality of the present work is in the application to the
two-terminal and all-terminal reliability problem with close
analysis of the complexity depending on the tree-width.

In figures 1 to 9, we describe on a practical example how
our algorithm works. Our goal is to compute the reliability of
the connection of node 1 to node 10, given that each edge has a
reliability of 50%. We present on the left part of each figure,
the network with in bold font the edges that were already
taken into consideration. On the right part, there is a partition
table, that is, each possible partition with the elements of the
front on the first column, and the associated probability on the
second column. In all, in figure 1, there is only one node in
the front, and therefore one possible partition, which occurs
with a probability of 100%. In figure 2, an edge is taken into
consideration, which connects the two nodes with a probability
of 50%, and otherwise lefts them unconnected. The table
grows up to figure 6 where node 3 is no more usefull for the
rest of the computation. Some states need to be merged, such
as the ones highlighted in figure 7. The simplified partition

{1} 100%

1

2

3

4

5
9

107

8

6

Fig. 1. A frontal approach: front includes node 1.
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Fig. 2. A frontal approach: front includes nodes 1 and 2.

is presented in figure 8, and the computation so proceeds in
figure 9. In the end, when all the intermediate nodes have been
taken into account and eliminated, the partition table is based
on the set {1, 10}, and our 2-terminal reliability is equal to
the probability that the complete partition {{1, 10}} occurs,
as opposed to the separated partition {{1}, {10}}.

Definition 2.1: A tree-decomposition of G is a family
(Xi, i ∈ I) of subsets of V , together with a tree T with
vertices indexed by I with the following properties:

(i) ∪i∈IXi = V .
(ii) Every edge of G has both its endpoints in some Xi (i ∈

I).
(iii) For i, j, and k in I , if j lies on the path of T from i to

k then Xi ∩Xk ⊆ Xj .
Accordingly, the width w of the tree decomposition is
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Fig. 3. A frontal approach: front includes nodes 1, 2 and 3.
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Fig. 4. A frontal approach: front includes nodes 1, 2, 3, and 4, edge {2,4},
but not edge {3,4}.
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Fig. 5. A frontal approach: front includes completely node 1, 2, 3, and 4.
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Fig. 6. A frontal approach: front includes nodes 1, 2, 3, 4 and 6.
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Fig. 7. A frontal approach: some states equivalent when eliminating node 3.
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Fig. 8. A frontal approach: reduced table after eliminating node 3.
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Fig. 9. A frontal approach: simplified front containing nodes 1, 2, and 7.

maxi∈I |Xi| − 1. The tree-width of a graph can be approx-
imated within O(log(|V |), but there is no polynomial time
algorithm that approximates w within a fixed constant unless
P = NP [4].

Now select an r ∈ I to be a root in T . We say that j ∈ I is
a descendant of i ∈ I if i lies on the path in T between r and
j, and we note Di the set of descendants of i. A neighboring
descendant is also called a son. Given two vertices s and t,
the front in i is given by

Fi = Xi ∪ ({s, t} ∩ ∪j∈DiXj) .

According to definition 2.1, we arbitrarily choose one index
ie such that Xie contains both endpoints of e.

A. The algorithm for the two-terminal network reliability
problem

We consider a bottom-up visit of T as follows. Suppose that
we are visiting k. We aim at collecting in k all the information
on failures of edges e such that ie is a descendant of k.
Any state of availibility/failure of the edges creates a partition
among the vertices of Fk. Equivalence classes are given by
the property “there exists a path made of available edges e
between those two vertices such that ie is a descendant of k”.
The probability that one equivalence class appears equals the
sum of the probabilities of the reliability/failure states giving
this partition.

We maintain during our visit the probabilities of appearance
of any partition of Fk. In the end, only s and t remain in Fr,
and two possible states: either they are connected or not. The
propability of the case where they are connected gives our
two-terminal reliability factor.



We store partitions with their probabilities of appearance in
a partition table PT . The basic steps are as follows (we explain
after the notions of merging, adding and removing elements).

Initialization
For any leaf i of T , we create a partition table PT (i)
of single vertices of Fi = Xi with probability 1.

Visit of k
• If k is not a leaf, we merge in PT (k) all the

partition tables PT (j) of the sons j of k.
• We add as singles in PT (k) the vertices of Fk

that are not already in.
• For any e such that ie = k we add e in PT (k).
• If k 6= r, we remove from PT (k) any vertex
v /∈ {s, t} that is not in Fl, with k son of l.

A merging of two partition tables PT1 and PT2 consists in
computing for each state s3 of the resulting partition table

Pr(s3) =
∑

Pr(s1)Pr(s2)

where the summation is over all partitions s1 and s2 that
combine to form s3. Using a proper algorithm for identifying
disjoint sets [8, pp. 440-464], s3 can be obtained from s1 and
s2 in O(w log∗(w)) steps, given that no set is larger than w,
where the log∗ function calculates how many times one would
need to take the log of a number before one would go below
2.

To add an edge e, we create a new partition table PTnew
from PTold. Each state s with probability π in PTold is
reconducted in PTnew with probability π·pe. Also for any state
s with probability π of PTold we merge the classes containing
the two endpoints of e into s′ and add to the probability of
appearance of s′ in PTnew the value π · (1− pe).

To remove a vertex v in a partition table PTold we forget
v and merge all the states that differ only in v by summing
their probabilities.

B. Complexity

Claim 2.1: Our algorithm for computing the two-terminal
reliability runs in O(|V |f(w)2 + |E|f(w)) with f(x) =(
x

ln x

)x
e−(1+o(1))x and w is the tree-width of G.

Proof: The algorithm uses extensively partitions of a set
of n elements. The number Bn of such partitions is also known
as the Bell number [2] and [19]. The asymptotic formula of
de Bruijn [10] gives

ln(Bn)

n
= ln(n)− ln ln(n)− 1 + o(1).

So the complexity of our algorithm is bounded by the
operations of merging partitions tables, adding edges and
removing vertices. There are at most 2|V | elements in T
(making the assumption that two Xi, Xj with i 6= j differ
from at least one vertex), and therefore |V | nodes with two
or more sons. Moreover, each partition table has at most
maxi∈I |Xi ∪ {s, t}| ≤ w+ 3 elements. A merging of k sons
can then be done in (k − 1)B2

w+3O(w log∗(w)) operations,
leading to a total of O(|V |B2

w+3w log∗(w)) steps in merging.
Also adding an edge can be done in O(Bw+3) operations. A

node is removed only once in the visit of the tree with the
same bound of O(Bw+3) operations per node. Therefore the
algorithm takes O(|V |B2

w+3w log∗(w)+|E|Bw+3) operations.
Using the formula above, we obtain a bound of O(|V |f(w)2+
|E|f(w)) with f(x) =

(
x

lnx

)x
e−(1+o(1))x.

Other approaches, such as the one of [25], present a nested
dissection algorithm (this vocabulary is derived from [12]),
which is in our case less efficient. Indeed, a nested dissection
approach has the consequence of doubling the size of the front,
and recall that f(2x)/f(x)2 = 4x(1+o(1)). This guarantees the
improvement of our method when w is more than log2 |V |/2.
Even lesser values can lead to an improvement, since in fact
the bisection width is increased when more merging is required
in our algorithm.

C. The algorithm for the all-terminal network reliability prob-
lem

For sake of completeness, we describe here the same
algorithm in the all-terminal problem case. The ultimate goal
is to calculate the probability that all terminals are connected.
The basic steps are as follows (we explain after the notions of
merging, adding and removing elements).

Initialization
For any leaf i of T , we create a partition table PT (i)
of single vertices of Fi = Xi with probability 1.

Visit of k

• If k is not a leaf, we merge in PT (k) all the
partition tables PT (j) of the sons j of k.

• We add as singles in PT (k) the vertices of Fk
that are not already in.

• For any e such that ie = k we add e in PT (k).
• If k 6= r, we remove from PT (k) all vertices

that are not in Fl, with k son of l.

A merging of two partition tables PT1 and PT2 consists in
computing for each state s3 of the resulting partition table

Pr(s3) =
∑

Pr(s1)Pr(s2)

where the summation is over all partitions s1 and s2 that
combine to form s3.

To add an edge e, we create a new partition table PTnew
from PTold. Each state s with probability π in PTold is
reconducted in PTnew with probability π·pe. Also for any state
s with probability π of PTold we merge the classes containing
the two endpoints of e into s′ and add to the probability of
appearance of s′ in PTnew the value π · (1− pe).

To remove a vertex v in a partition table PTold we forget
v, we drop from the list all the states where v appears as a
singleton, and merge all the remaining states that differ only
in v by summing their probabilities.

Once T has been entirely visited, the all-terminal reliability
is given by the probability that all nodes of r are connected
in PT (r).

Since the front has at most a size of w+1, we easily deduce
that the complexity is also given by O(|V |f(w)2 + |E|f(w))
with f(x) =

(
x

lnx

)x
e−(1+o(1))x.



III. POLYNOMIAL BOUNDS

We will approximate the actual reliability of the network
by computing a lower bound and an upper bound of the
reliability using the fact that paths and cuts form a blocking
pair of binary clutters (for definition and properties related to
Lehman’s theorem one can see [21, pages 86, 562, and 601]).
In this part, the graph considered can be either undirected
or directed. Note that the oriented case introduces in general
more difficulty, see [7]. Therefore the bounds given in the
following apply in a more general case. Although we consider
only edge failures in this section our approach remains general
in the oriented case since we can introduce node failures with
probabilty pn by operating a Mengerian transformation. Thus
the problem is reduced to the previous one if we give a failure
probability pn to the edge arising after the transformation.
Note also that a lower bound for the two-terminal reliability
problem remains true for the all-terminal reliability problem.

Our approach for determining easily computable bounds
for large networks is based on computing the reliability of
monotone structures. Computing bounds of the reliability of
such structures is extensively exposed in [17]. One will notice
that the clutters we use are special cases of the clutters used
by the previous authors in the sense that the clutters we use
have the Maxflow-Mincut property, see [26].

A. Upper bound and lower bound of the reliability

Let pe denote the failure probability of edge e and Dst the
probability that there exists an available path between s and
t. Consider a cut δ(S) separating t from s. As a definition of
cut this set of edges intersects all the paths linking s to t. We
will say that a cut is available if there is at least one of its
edges working, thus its availability is given by 1−

∏

e∈δ(S)

pe.

Claim 3.1: The availability of the st-cut minimizing 1 −∏

e∈δ(S)

pe is an upper bound of the st-reliability for the

network :

Dst ≤Min{1−
∏

e∈δ(S)

pe, S ⊂ V, S 6= ∅, S 6= V }.

We will denote with dst this measure of the reliability.
Proof: Immediate if we remark that considering the

measure of the reliability yielded by the edges of the cut with
minimum availability leads us to consider that all the other
cuts are considered as infallible.
Now we check that the measure of the reliability induced by
the cut with minimum availability can be computed in an easy
way.

Claim 3.2: As an upper bound for the st-reliability of the
network the availability of the cut minimizing 1−

∏

e∈δ(S)

pe can

be computed in polynomial-time of the size of the network.
Precisely it can be done in O(|V |3).

Proof: Suppose that each edge e ∈ E may collapse, this
assumption leads to consider failure probabilities pe, ∀e ∈ E
such that 0 < pe ≤ 1. Thus ln(pe) is defined for all edge

e ∈ E. Furthermore ln(pe) ≤ 0, ∀e ∈ E.
As a definition of the reliability criterion we have :

dst = Min{1−
∏

e∈δ(S)

pe, s ∈ S, t ∈ V − S}

Computing dst can be reduced to compute
Max{

∏

e∈δ(S)

pe, s ∈ S, t ∈ V − S}. Since the ln

function is strictly monotone increasing we may say that
Max{

∏

e∈δ(S)

pe, s ∈ S, t ∈ V − S} is equivalent to

Max{ln(
∏

e∈δ(S)

pe), s ∈ S, t ∈ V − S}, in addition we

have :

Max{ln(
∏

e∈δ(S)

pe), s ∈ S, t ∈ V − S}

= Max{
∑

e∈δ(S)

ln(pe), s ∈ S, t ∈ V − S}

= Min{
∑

e∈δ(S)

−ln(pe), s ∈ S, t ∈ V − S}

Thus the problem is reduced to computing a minimum st-cut
in a graph G = (V,E), each edge having weight −ln(pe).
We saw previously that ln(pe) ≤ 0, ∀e ∈ E. This allows
us to say that the problem is reduced to compute a minimum
weighted st-cut in a graph whose edges have non negative
weights. Thus it can be done in O(|V |3) using Karzanov’s
max-flow algorithm, see [16].

Now we look for a lower bound of the reliability. Clearly if
we consider the subgraph induced by the set of disjoint paths
linking s to t we will have a lower bound of the reliability of
the network for the couple (s, t). Hence we will focus on the
reliability when the set of st-paths is reduced to a set of edge
disjoint paths.
Let Cst denote the set of the st-disjoint paths, Pst denotes the
packing of st-cuts, πi the probability that the path i ∈ Cst is
out of order and di = 1− πi its availability, as previously pe
denotes the failure probability of the edge e. Then we may
write :

Dst = 1−
∏

i∈Cst
πi = 1−

∏

i∈Cst
(1− di) =

1−
∏

i∈Cst
(1−

∏

e∈i
(1− pe))

Now we suppose1 that ∀e ∈ E pe = ε, this hypothesis is not so
strong if we take into account that the failure probabilities of
the network components are very small and in addition if the
failure probability of a component is εq it may be replaced by
q parallel components with failure probability ε. We obtain :

Dst = 1−
∏

i∈Cst
(1− (1− ε)|i|)

where |i| is the number of edges of the path i ∈ Cst. Let i0 be
the shortest path in the number of edges among those which

1this restriction is called ε-reliability in [7]



belong to Cst, then (1− ε)|i| ≤ (1− ε)|i0|, ∀i ∈ Cst. Thereby
we obtain :

1− (1− ε)|i0| ≤ 1− (1− ε)|i|, ∀i ∈ Cst
∏

i∈Cst
(1− (1− ε)|i0|) = (1− (1− ε)|i0|)|Cst|

≤
∏

i∈Cst
(1− (1− ε)|i|).

which leads to : Dst ≤ 1− (1− (1− ε)|i0|)|Cst|.
Consider the measure of the reliability defined by the product
of the availabilities of the cuts of the packing Pst, then we
have :

∏

δ(S)∈Pst
(1−

∏

e∈δ(S)

pe) =
∏

δ(S)∈Pst
(1− ε|δ(S)|).

Notice that this definition of the reliability gives rise to an
upper bound of the reliability when Cst is a set of disjoint
paths. Indeed, as shown in the example below some edges are
not covered by the packing, and so this is equivalent to con-
sider these edges infallible. Since the number of disjoint paths
equals the cardinality of a minimum cut and the cardinality
of a maximum packing of disjoint cuts equals the number of
edge of a shortest path we may write :
∏

δ(S)∈Pst
(1− ε|δ(S)|) ≤

∏

δ(S)∈Pst
(1− ε|Cst|) = (1− ε|Cst|)|i0|.

Let ∆(S) be the st cut which maximizes
∏

e∈δ(S)

pe, then we

obtain :
∏

δ(S)∈Pst
(1−ε|δ(S)|) ≥

∏

δ(S)∈Pst
(1−ε|∆(S)|) = (1−ε|∆(S)|)|i0|.

Let E(Pst) be the set of edges covered by the packing Pst
and E(Cst) the set of edges which appear in a path of Cst,
then Dst = E(Cst)−E(Pst) is the set of edges which belong
to a path and are not covered by the packing of disjoint cuts
Pst.

Claim 3.3: The quantity A(Pst) = (1− ε|∆(S)|)|i0| × (1−
ε)|Dst| is a lower bound of the reliability of the network

Proof: On one hand we consider the case where all the
edges of E(Cst) are covered by the packing of disjoint cuts
Pst, then since |Dst| = 0 we have :

A(Pst) = (1− ε|∆(S)|)|i0| × (1− ε)|Dst| = (1− ε|∆(S)|)|i0|.

Remark that under this assumption all the st-paths have a
length equal to |i0|. One of the edges of ∆(S) works with
probability 1− ε|∆(S)|. We need this to be true for all the |i0|
cuts in the packing, therefore a lower bound appears of:

(1− ε|∆(S)|)|i0|.

So we are done in this first case.
On the other hand consider that Dst 6= ∅. Without loss of
generality we may suppose that Pst is covering the |i0| first
edges of any st-path. Now consider an extra vertex t′ and
carry out the transformation specified in figure 10.

Clearly the product dst′ × dt′t is a lower bound of the
reliability of the network for the couple (s, t). Computing the
availabilty between s and t′ matches the case where all the
edges of E(Cst) are covered by the packing of disjoint cuts,
and (1 − ε)|Dst| is a lower bound of the reliability of the
network for the couple (t′, t). Thus the result follows.
T.B. Brecht and C.J. Colbourn give a lower bound similar to
A(Pst) but quite different and not so easy to compute in [5].
This bound is the following : 1−∏|∆(S)|

i=1 Pi where Pi is the
probability that the ith path fails.
Now we will show how to improve the lower bound. First
of all, note that the network consisting of the edges of Pst
has necessarily a lower reliability, so we restrict ourselves
to the case where the set of edges is E(Cst). Consider the
edges of E(Cst) which are not covered by the packing Pst.
By definition each of these edges belongs to an st-path. So
consider a path p ∈ Cst and suppose that k of its edges are not
covered by Pst, without loss of generality we may suppose
that these edges are the k last ones of the path p. In order
to cover all the edges of the path p by the packing Pst we
shrink all these k edges and assign to those which comes
before them the reliability corresponding to the reliability of
the sub-path composed with these k + 1 edges : (1 − ε)k+1.
Now we express the reliability over the packing of cuts, P ′st,
obtained after we shrank the uncovered edges of any st path.
Let ki, i ∈ {1, . . . , |Cst|} be the number of uncovered edges
of the path pi ∈ Cst. We denote δ0(S) the cut of Pst coming
before the uncovered edges and δ′0(S) the cut of P ′st that we
obtain after we shrank the uncovered edges. Let d(P ′st) be the
measure of the reliability of the network for the couple (s, t)
involved by the product of the availabilities of the cuts of the
packing P ′st, then we have :

d(P ′st) =
∏

δ(S)∈Pst
(1− ε|δ(S)|)(1−

∏

e∈δ′0(S)

(1− (1− ε)ki+1)).

Then if we replace δ(S) by ∆(S) for all cuts we obtain :

d(P ′st) ≥ A(P ′st) =

(1− ε|∆(S)|)|i0|−1(1−
∏

e∈δ′0(S)

(1− (1− ε)ki+1)).

It follows from the claim 3.3 that A(P ′st) is a lower bound of
the reliability of the network for the couple (s, t).

Lemma 3.1: Both lower bounds A(Pst) and A(P ′st) can be
computed in O(|V |3).

Proof: Straightforward if we remark that we just need
to compute a minimum cut and a shortest path in order to
reach the bounds. As seen previously the minimum cut can
computed in O(|V |3) and the shortest path can be computed
in O(|V |2) using the Dijkstra’s algorithm.

B. Ratio between different measures of the reliability

In this section we express the ratios between the different
measures of the reliability. On one hand we show that A(P ′st)
is a better lower bound than A(Pst). On the other hand we
express the ratio between the lower bound A(P ′st) and the
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Fig. 10. Transformation used for the proof.

upper bound involved by the cut with the minimum reliability
dst.

Lemma 3.2: The lower bound A(P ′st) is a better lower
bound than A(Pst).

Proof: Let R0 =
A(P ′st)
A(Pst)

, then R0 =
1−
∏

e∈δ′
0
(S)

(1−(1−ε)ki+1)

(1−ε)|Dst| . Straightforward from the definitions
of Pst and P ′st we have R0 ≥ 1.
Now we will express the ratio between the lower bound and
the upper bound : R1 =

A(P ′st)
dst

. According to the definitions
of the two bounds it arises that :

R1 =
(1−ε|∆(S)|)|i0|(1−

∏
e∈δ′

0
(S)

(1−(1−ε)ki+1))

(1−ε|Cst|)

Since |∆(S)| = |Cst| and 1 −∏e∈δ′0(S)(1 − (1 − ε)ki+1) ≥
(1− ε)|Dst| it follows that :

R1 ≥ (1− ε|∆(S)|)|i0|−1 × (1− ε)|Dst|.
This ratio confirms what can be seen intuitively : the lower
bound becomes better as the set of uncovered edges becomes
smaller, and the upper bound is better if the shortest path has
just little few edges. If the latter conditions are fulfilled then
the upper bound is closer to the lower bound.

IV. FURTHER WORK

We explained in the introduction that every network compo-
nent e has a mean time before failure, Mtbf e, and a mean time
to repair, Mttr e. Thus the failure probability of this component
e is pe = Mttre

Mtbf e
. Let γe be the savings done when the Mttr e

is increased by one unit of time. The problem of interest, now,
is to compute for every network component its best Mttr e, or
equivalently its failure probability pe, in order to achieve the
largest savings possible while reaching for every couple (s, t)
the required level of reliability rst. The total savings which
can be done is given by the following objective function :

∑

e∈E
γeMttre =

∑

e∈E
γeMtbf epe.

Let c = (γeMtbf e)e∈E and p ∈ (0, 1]|E| the failure probability
vector of the network components, then we can formulate the
problem previously described as follows :

Problem 4.1: Given c ∈ IR|E|+ find p ∈ (0, 1]|E| that solves

{
Max ctp
s.t. dst(p) ≥ rst ∀(s, t)

where dst(p) is the st-reliability of the random graph induced
by p.
Under the assumption that pe = ε ∀e ∈ E the problem
collapses to maximizing ε under the constraints dst(ε|E|) ≥
rst ∀(s, t). Note that, since the parameter looked at is a
scalar in this case, and the reliability is decreasing with it, a
dichotomic approach on the algorithm of section II can work.
Meanwhile, in a more general context, using the bounds seen
in section III we define a relaxation of this latter problem.
Since we want the required reliability to be reached, we want
that rst ≤ dst, where dst is the actual measure of the st-
reliability of the network for the couple (s, t). We previously
saw that dst ≥ A(Pst), thus if we take this last expression as
the measure of the network reliability and if we impose that
rst ≤ A(Pst) we are sure that the required reliability will be
reached. Thereby we obtain the following expression of the
constraints of the problem :

A(Pst) = (1− ε|∆(S)|)|i0|(1− ε)|Dst| ≥ rst ∀(s, t).
This is equivalent to : |i0|ln(1− ε|∆(S)|) + |Dst|ln(1− ε) ≥
ln(rst) ∀(s, t). Now if we consider a first order expansion
of ln(1 − ε|∆(S)|) and ln(1 − ε) and if we merge ε and its
powers for small values of the exponent we obtain : ln(1 −
ε|∆(S)|) ' −|∆(S)|ε and ln(1 − ε) ' −ε. This leads us to
write the constraints of the problem in the following form :
−|i0||∆(S)|ε − |Dst|ε ≥ ln(rst) ∀(s, t). Then the problem
which consists in computing the values of the Mttr e leading
to the largest savings and satisfying the reliability requirement
can be formulated as the below linear program :

{
Max ε
s.t. −|i0||∆(S)|ε− |Dst|ε ≥ ln(rst) ∀(s, t)

Once the Mttre is computed for each equipment one deter-
mines the size of the sets of parts needed for servicing and
the size of the maintenance teams. One other step in further
development would be to compute lower and upper bounds as
close as possible for large ranging failure probabilities of the
equipments. This may be important if we consider the behavior
of a network during ground operations since in this case some
components may be more exposed than others.
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